16 research outputs found

    Cloud Shadow Detection and Removal from Aerial Photo Mosaics Using Light Detection and Ranging (LIDAR) Reflectance Images

    Get PDF
    The process of creating aerial photo mosaics can be severely affected by clouds and the shadows they create. In the CZMIL project discussed in this work, the aerial survey aircraft flies below the clouds, but the shadows cast from clouds above the aircraft cause the resultant mosaic image to have sub-optimal results. Large intensity variations, caused both from the cloud shadow within a single image and the juxtaposition of areas of cloud shadow and no cloud shadow during the image stitching process, create an image that may not be as useful to the concerned research scientist. Ideally, we would like to be able to detect such distortions and correct for them, effectively removing the effects of the cloud shadow from the mosaic. In this work, we present a method for identifying areas of cloud shadow within the image mosaic process, using supervised classification methods, and subsequently correcting these areas via several image matching and color correction techniques. Although the available data contained many extreme circumstances, we show that, in general, our decision to use LIDAR reflectance images to correctly classify cloud and not cloud pixels has been very successful, and is the fundamental basis for any color correction used to remove the cloud shadows. We also implement and discuss several color transformation methods which are used to correct the cloud shadow covered pixels, with the goal of producing a mosaic image which is free from cloud shadow effects

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Walter Deane correspondence.

    No full text
    Sender Bailey, William W., 1888-189

    Walter Deane correspondence.

    No full text

    Walter Deane correspondence.

    No full text
    Senders W-Z, 1854-192
    corecore